Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 157
1.
Environ Sci Ecotechnol ; 21: 100422, 2024 Sep.
Article En | MEDLINE | ID: mdl-38746775

Remediating soil contaminated with polycyclic aromatic hydrocarbons (PAHs) presents a significant environmental challenge due to their toxic and carcinogenic properties. Traditional PAHs remediation methods-chemical, thermal, and bioremediation-along with conventional soil-washing agents like surfactants and cyclodextrins face challenges of cost, ecological harm, and inefficiency. Here we show an effective and environmentally friendly calixarene derivative for PAHs removal through soil washing. Thiacalix[4]arene tetrasulfonate (TCAS) has a unique molecular structure of a sulfonate group and a sulfur atom, which enhances its solubility and facilitates selective binding with PAHs. It forms host-guest complexes with PAHs through π-π stacking, OH-π interactions, hydrogen bonding, van der Waals forces, and electrostatic interactions. These interactions enable partial encapsulation of PAH molecules, aiding their desorption from the soil matrix. Our results show that a 0.7% solution of TCAS can extract approximately 50% of PAHs from contaminated soil while preserving soil nutrients and minimizing adverse environmental effects. This research unveils the pioneering application of TCAS in removing PAHs from contaminated soil, marking a transformative advancement in resource-efficient and sustainable soil remediation strategies.

2.
Environ Sci Ecotechnol ; 20: 100410, 2024 Jul.
Article En | MEDLINE | ID: mdl-38572083

Energy recovery from low-strength wastewater through anaerobic methanogenesis is constrained by limited substrate availability. The development of efficient methanogenic communities is critical but challenging. Here we develop a strategy to acclimate methanogenic communities using conductive carrier (CC), electrical stress (ES), and Acid Orange 7 (AO7) in a modified biofilter. The synergistic integration of CC, ES, and AO7 precipitated a remarkable 72-fold surge in methane production rate compared to the baseline. This increase was attributed to an altered methanogenic community function, independent of the continuous presence of AO7 and ES. AO7 acted as an external electron acceptor, accelerating acetogenesis from fermentation intermediates, restructuring the bacterial community, and enriching electroactive bacteria (EAB). Meanwhile, CC and ES orchestrated the assembly of the archaeal community and promoted electrotrophic methanogens, enhancing acetotrophic methanogenesis electron flow via a mechanism distinct from direct electrochemical interactions. The collective application of CC, ES, and AO7 effectively mitigated electron flow impediments in low-strength wastewater methanogenesis, achieving an additional 34% electron recovery from the substrate. This study proposes a new method of amending anaerobic digestion systems with conductive materials to advance wastewater treatment, sustainability, and energy self-sufficiency.

3.
Environ Res ; 252(Pt 1): 118859, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38574986

Electrocatalytic hydrodechlorination (EHDC) is a promising approach to safely remove halogenated emerging contaminants (HECs) pollutants. However, sluggish production dynamics of adsorbed atomic H (H*ads) limit the applicability of this green process. In this study, bimetallic Pd-Cu@MXene catalysts were synthesized to achieve highly efficient removal of HECs. The alloy electrode (Pd-Cu@MX/CC) exhibited better EHDC performance in comparison to Pd@MX/CC electrode, resulting in diclofenac degradation efficiency of 93.3 ± 0.1%. The characterization analysis revealed that the Pd0/PdII ratio decreased by forming bimetallic Pd-Cu alloy. Density functional theory calculations further demonstrated the electronic configuration modulation of the Pd-Cu@MXene catalysts, optimizing binging energies for H* and thereby facilitating H*ads production and tuning the reduction capability of H*ads. Noteably, the amounts and reduction potential of H*ads for Pd-Cu@MXene catalysts were 1.5 times higher and 0.37 eV lower than those observed for the mono Pd electrode. Hence, the introduction of Cu into the Pd catalyst optimized the dynamics of H*ads production, thereby conferring significant advantages to EHDC reactions. This augmentation was underscored by the successful application of the alloy catalysts supported by MXene in EHDC experiments involving other HECs, which represented a new paradigm for EHDC for efficient recalcitrant pollutant removal by H*ads.

4.
Environ Sci Technol ; 58(9): 4193-4203, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38393778

Sulfur disproportionation (S0DP) poses a challenge to the robust application of sulfur autotrophic denitrification due to unpredictable sulfide production, which risks the safety of downstream ecosystems. This study explored the S0DP occurrence boundaries with nitrate loading and temperature effects. The boundary values increased with the increase in temperature, exhibiting below 0.15 and 0.53 kg-N/m3/d of nitrate loading at 20 and 30 °C, respectively. A pilot-scale sulfur-siderite packed bioreactor (150 m3/d treatment capacity) was optimally designed with multiple subunits to dynamically distribute the loading of sulfur-heterologous electron acceptors. Operating two active and one standby subunit achieved an effective denitrification rate of 0.31 kg-N/m3/d at 20 °C. For the standby subunit, involving oxygen by aeration effectively transformed the facultative S0DP functional community from S0DP metabolism to aerobic respiration, but with enormous sulfur consumption resulting in ongoing sulfate production of over 3000 mg/L. Meanwhile, acidification by the sulfur oxidation process could reduce the pH to as low as 2.5, which evaluated the Gibbs free energy (ΔG) of the S0DP reaction to +2.56 kJ, thermodynamically suppressing the S0DP occurrence. Therefore, a multisubunit design along with S0DP inhibition strategies of short-term aeration and long-term acidification is suggested for managing S0DP in various practical sulfur-packed bioreactors.


Carbonates , Ecosystem , Ferric Compounds , Nitrates , Nitrates/metabolism , Autotrophic Processes , Temperature , Sulfur/metabolism , Bioreactors , Denitrification , Nitrogen
5.
J Hazard Mater ; 465: 133438, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38198865

Given widespread presence of polystyrene (PS) microplastics/nanoplastics (MPs/NPs), the electroactive responses and adaptation mechanisms of electroactive biofilms (EABs) exposed long-term to PS-containing aquatic environments remain unclear. Therefore, this study investigated the impacts of PS MPs/NPs on electroactivity of EABs. Results found that EABs exhibited delayed formation upon initially exposure but displayed an increased maximum current density (Imax) after subsequent exposure for up to 55 days. Notably, EABs exposure to NH2PS NPs (EAB-NH2PSNPs) demonstrated a 50% higher Imax than the control, along with a 17.84% increase in viability and a 58.10% increase in biomass. The cytochrome c (c-Cyts) content in EAB-NH2PSNPs rose by 178.35%, benefiting the extracellular electron transfer (EET) of EABs. Moreover, bacterial community assembly indicated the relative abundance of electroactive bacteria increased to 87.56% in EAB-NH2PSNPs. The adaptability mechanisms of EABs under prolonged exposure to PS MPs/NPs predominantly operate by adjusting viability, EET, and bacterial community assembly, which were further confirmed a positive correlation with Imax through structural equation model. These findings provide deeper insights into long-term effects and mechanisms of MPs/NPs on the electroactive properties of EABs and even functional microorganisms in aquatic ecosystems.


Microplastics , Polystyrenes , Plastics , Ecosystem , Biofilms
6.
Bioresour Technol ; 393: 130081, 2024 Feb.
Article En | MEDLINE | ID: mdl-37993067

The sulfur fluidizing bioreactor (S0FB) has significant superiorities in treating nitrate-rich wastewater. However, substantial self-acidification has been observed in engineering applications, resulting in frequent start-up failures. In this study, self-acidification was reproduced in a lab-scale S0FB. It was demonstrated that self-acidification was mainly induced by sulfur disproportionation process, accounting for 93.4 % of proton generation. Supplying sufficient alkalinity to both the influent (3000 mg/L) and the bulk (2000 mg/L) of S0FB was essential for achieving a successful start-up. Furthermore, the S0FB reached 10.3 kg-N/m3/d of nitrogen removal rate and 0.13 kg-PO43-/m3/d of phosphate removal rate, respectively, surpassing those of the documented sulfur packing bioreactors by 7-129 times and 26-65 times. This study offers a feasible and practical method to avoid self-acidification during restart of S0FB and highlights the considerable potential of S0FB in the treatment of nitrate-rich wastewater.


Nitrates , Wastewater , Autotrophic Processes , Denitrification , Sulfur , Bioreactors , Hydrogen-Ion Concentration , Nitrogen
7.
Water Res ; 249: 120915, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38029487

Utilizing H2-assisted ex-situ biogas upgrading and acetate recovery holds great promise for achieving high value utilization of biogas. However, it faces a significant challenge due to acetate's high solubility and limited economic value. To address this challenge, we propose an innovative strategy for simultaneous upgrading of biogas and the production of medium-chain fatty acids (MCFAs). A series of batch tests evaluated the strategy's efficiency under varying initial gas ratios (v/v) of H2, CH4, CO2, along with varying ethanol concentrations. The results identified the optimal conditions as initial gas ratios of 3H2:3CH4:2CO2 and an ethanol concentration of 241.2 mmol L-1, leading to maximum CH4 purity (97.2 %), MCFAs yield (54.2 ± 2.1 mmol L-1), and MCFAs carbon-flow distribution (62.3 %). Additionally, an analysis of the microbial community's response to varying conditions highlighted the crucial roles played by microorganisms such as Clostridium, Proteiniphilum, Sporanaerobacter, and Bacteroides in synergistically assimilating H2 and CO2 for MCFAs production. Furthermore, a 160-day continuous operation using a dual-membrane aerated biofilm reactor (dMBfR) was conducted. Remarkable achievements were made at a hydraulic retention time of 2 days, including an upgraded CH4 content of 96.4 ± 0.3 %, ethanol utilization ratio (URethanol) of 95.7 %, MCFAs production rate of 28.8 ± 0.3 mmol L-1 d-1, and MCFAs carbon-flow distribution of 70 ± 0.8 %. This enhancement is proved to be an efficient in biogas upgrading and MCFAs production. These results lay the foundation for maximizing the value of biogas, reducing CO2 emissions, and providing valuable insights into resource recovery.


Biofuels , Bioreactors , Carbon Dioxide , Methane , Biofilms , Acetates , Carbon , Ethanol , Fatty Acids
8.
Water Res ; 246: 120676, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37806124

Intelligent control of wastewater treatment plants (WWTPs) has the potential to reduce energy consumption and greenhouse gas emissions significantly. Machine learning (ML) provides a promising solution to handle the increasing amount and complexity of generated data. However, relationships between the features of wastewater datasets are generally inconspicuous, which hinders the application of artificial intelligence (AI) in WWTPs intelligent control. In this study, we develop an automatic framework of feature engineering based on variation sliding layer (VSL) to control the air demand precisely. Results demonstrated that using VSL in classic machine learning, deep learning, and ensemble learning could significantly improve the efficiency of aeration intelligent control in WWTPs. Bayesian regression and ensemble learning achieved the highest accuracy for predicting air demand. The developed models with VSL-ML models were also successfully implemented under the full-scale wastewater treatment plant, showing a 16.12 % reduction in demand compared to conventional aeration control of preset dissolved oxygen (DO) and feedback to the blower. The VSL-ML models showed great potential to be applied for the precision air demand prediction and control. The package as a tripartite library of Python is called wwtpai, which is freely accessible on GitHub and CSDN to remove technical barriers to the application of AI technology in WWTPs.


Waste Disposal, Fluid , Water Purification , Waste Disposal, Fluid/methods , Artificial Intelligence , Bayes Theorem , Machine Learning , Water Purification/methods
9.
J Hazard Mater ; 459: 132183, 2023 10 05.
Article En | MEDLINE | ID: mdl-37531766

Electroactive biofilms (EABs) play a crucial role in environmental bioremediation due to their excellent extracellular electron transfer (EET) capabilities. However, Cd2+ can have toxic effects on the electrochemical performance of EABs, and the comprehensive inhibition mechanism of EABs in response to Cd2+ shock remains elusive. This study indicated that Cd2+ shock significantly reduced biomass and increased oxidative stress in EABs at the cellular level. The bacterial viability of EABs in phase III under 0.5 mM Cd2+ shock (EABCd2+-III0.5) decreased by 16.31% compared to EABCK-III. Moreover, intracellular NADH, c-Cyts, and the abundance of electroactive species were essential indicators to evaluate EET behavior of EABs. In EABCd2+-III0.5, these indicators decreased by 26.32%, 33.40%, and 20.65%, respectively. Structural equation modeling analysis established quantitative correlations between core components and electrochemical activity at cellular and community levels. The correlation analysis revealed that the growth and electron transfer functions of EABs were predictive indicators for their electrochemical performance, with standardized path coefficients of 0.407 and 0.358, respectively. These findings enhance our understanding of EABs' response to Cd2+ shock and provide insights for improving their performance in heavy metal wastewater.


Cadmium , Geobacter , Cadmium/toxicity , Microbial Viability , Electrons , Electrodes , Biofilms
10.
Environ Pollut ; 334: 122081, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37414118

The coexistence of antibiotics and heavy metals in agroecosystems is nonnegligible, which permits the promotion of antibiotic resistance genes (ARGs) in crops, thus posing a potential threat to humans along the food chain. In this study, we investigated the bottom-up (rhizosphere→rhizome→root→leaf) long-distance responses and bio-enrichment characteristics of ginger to different sulfamethoxazole (SMX) and chromium (Cr) contamination patterns. The results showed that ginger root systems adapted to SMX- and/or Cr-stress by increasing humic-like exudates, which may help to maintain the rhizosphere indigenous bacterial phyla (i.e., Proteobacteria, Chloroflexi, Acidobacteria and Actinobacteria). The root activity, leaf photosynthesis and fluorescence, and antioxidant enzymes (SOD, POD, CAT) of ginger were significantly decreased under high-dose Cr and SMX co-contamination, while a "hormesis effect" was observed under single low-dose SMX contamination. For example, CS100 (co-contamination of 100 mg/L SMX and 100 mg/L Cr) caused the most severe inhibition to leaf photosynthetic function by reducing photochemical efficiency (reflected on PAR-ETR, φPSII and qP). Meanwhile, CS100 induced the highest ROS production, in which H2O2 and O2·- increased by 328.82% and 238.00% compared with CK (the blank control without contamination). Moreover, co-selective stress by Cr and SMX induced the increase of ARG bacterial hosts and bacterial phenotypes containing mobile elements, contributing to the high detected abundance of target ARGs (sul1, sul2) up to 10-2∼10-1 copies/16S rRNA in rhizomes intended for consumption.


Anti-Bacterial Agents , Zingiber officinale , Humans , Anti-Bacterial Agents/pharmacology , Sulfamethoxazole , Zingiber officinale/genetics , Soil , Chromium/toxicity , RNA, Ribosomal, 16S , Hydrogen Peroxide , Bacteria/genetics , Genes, Bacterial , Drug Resistance, Microbial/genetics
11.
Water Res ; 243: 120356, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37516076

Elemental sulfur packed-bed (S0PB) bioreactors for autotrophic denitrification have gained more attention in wastewater treatment due to their organic carbon-free operation, low operating cost, and minimal carbon emissions. However, the rapid development of microbial S0-disproportionation (MS0D) in S0PB reactor during deep denitrification poses a significant drawback to this new technology. MS0D, the process in which sulfur is used as both an electron donor and acceptor by bacteria, plays a crucial role in the microbial-driven sulfur cycle but remains poorly understood in wastewater treatment setups. In this study, we induced MS0D in a pilot-scale S0PB reactor capable of denitrifying over 1000 m3/d nitrate-containing wastewater. Initially, the S0PB reactor stably removed 6.6 mg-NO3--N/L nitrate at an empty bed contact time (EBCT) of 20 mins, which was designated the S0-denitrification stage. To induce MS0D, we reduced the influent nitrate concentrations to allow deep nitrate removal, resulted in the production of large quantities of sulfate and sulfide (SO42-:S2- 3.2 w/w). Meanwhile, other sulfur-heterologous electron acceptors (SHEAs), e.g., nitrite and DO, were also kept at trace levels. The negative correlations between the SHEAs concentrations and the sulfide productions indicated that the absence of SHEAs was a primary inducing factor to MS0D. The microbial community drastically diverged in response to the depletion of SHEAs during the switch from S0-denitrification to S0-disproportionation. An evident enrichment of sulfur-disproportionating bacteria (SDBs) was found at the S0-disproportionation stage, accompanied by the decline of sulfur-oxidizing bacteria (SOBs). In the end, we discovered that shortening the EBCT and increasing the reflux ratio could inhibit sulfide production by reducing it from 43.9 mg/L to 3.2 mg/L or 25.5 mg/L. In conclusion, our study highlights the importance of considering MS0D when designing and optimizing S0PB reactors for sustainable autotrophic sulfur denitrification in real-life applications.


Denitrification , Nitrates , Autotrophic Processes , Sulfur , Bioreactors/microbiology , Bacteria , Sulfides , Nitrogen
12.
J Hazard Mater ; 459: 132113, 2023 Oct 05.
Article En | MEDLINE | ID: mdl-37487329

In this study, a Pd@MXene catalyst was synthesized to enhance the electrocatalytic hydrodehalogenation (ECH) of emerging halogenated organic pollutants (HOPs) by improving the dispersibility, catalytic activity, and stability of palladium (Pd). The average size of Pd nanoparticles (NPs) was reduced to 3.62 ± 0.34 nm with a more intensive peak of Pd (111), which facilitated atomic hydrogen (H*) production. The Pd@MX/CC electrode demonstrated superior ECH activity for diclofenac (DCF) degradation, with a reaction rate constant (kobs) 2.48 times higher than that of Pd/CC (without MXene). The satisfactory ECH performance of Pd@MX/CC remained consistent within a wide range of initial DCF concentrations (5-100 mg/L), and no significant ECH attenuation was observed even after up to 10 batches. Furthermore, the high activity of Pd@MX/CC was also observed in the ECH of other halogenated organic pollutants (levofloxacin, tetrabromobisphenol A, and diatrizoate). Density functional theory (DFT) calculations revealed that electronic configuration modulation of the Pd@MXene catalyst optimized binging energies to H* , DCF, and dechlorinated products, thereby enhancing the ECH efficiency of DCF.

13.
Bioresour Technol ; 382: 129121, 2023 Aug.
Article En | MEDLINE | ID: mdl-37146695

In this work, the bioelectrochemical system (BES) is a feasible alternative for successfully degrading typical refractory emerging contaminant triclosan (TCS). A single-chamber BES reactor with an initial TCS concentration of 1 mg/L, an applied voltage of 0.8 V, and a solution buffered with 50 mM PBS degraded 81.4 ± 0.2% of TCS, exhibiting TCS degradation efficiency improvement to 90.6 ± 0.2% with a biocathode formed from a reversed bioanode. Both bioanode and biocathode were able to degrade TCS with comparable efficiencies of 80.8 ± 4.9% and 87.3 ± 0.4%, respectively. Dechlorination and hydrolysis were proposed as the TCS degradation pathway in the cathode chamber, and another hydroxylation pathway was exclusive in the anode chamber. Microbial community structure analysis indicated Propionibacteriaceae was the predominant member in all electrode biofilms, and the exoelectrogen Geobacter was enriched in anode biofilms. This study comprehensively revealed the feasibility of operating BES technology for TCS degradation.


Triclosan , Electrodes
14.
Environ Res ; 231(Pt 1): 116061, 2023 Aug 15.
Article En | MEDLINE | ID: mdl-37149027

Dosing sulfide into the sulfur-packed-bed (S0PB) has great potential to enhance the denitrification efficiency by providing compensatory electron donors, however, the response of sulfur-metabolizing biofilm to various sulfide dosages has never been investigated. In this study, the S0PB reactor was carried out with increasing sulfide dosages by 3.6 kg/m3/d, presenting a decreasing effluent nitrate from 14.2 to 2.7 mg N/L with accelerated denitrification efficiency (k: 0.04 to 0.27). However, 6.5 mg N/L of nitrite accumulated when the sulfide dosage exceeded 0.9 kg/m3/d (optimum value). The increasing electron export contribution of sulfide a maximum of 85.5% illustrated its competition with the in-situ sulfur. Meanwhile, over-dosing sulfide caused serious biofilm expulsion with significant decreases in the total biomass, live cell population, and ATP by 90.2%, 86.7%, and 54.8%, respectively. This study verified the capacity of dosing sulfide to improve the denitrification efficiency in S0PB but alerted the negative effect of exceeded dosing.


Bioreactors , Denitrification , Sulfides , Sulfur , Biofilms
15.
Environ Res ; 231(Pt 1): 116047, 2023 Aug 15.
Article En | MEDLINE | ID: mdl-37149031

In recent years, biological sulfur (bio-S) was employed in sulfur autotrophic denitrification (SAD) in which autotrophic Thiobacillus denitrificans and heterotrophic Stenotrophomonas maltophilia played a key role. The growth pattern of T.denitrificans and S.maltophilia exhibited a linear relationship between OD600 and CFU when OD600 < 0.06 and <0.1, respectively. When S.maltophilia has applied alone, the NorBC and NosZ were undetected, and denitrification was incomplete. The DsrA of S.maltophilia could produce sulfide as an alternative electron donor for T.denitrificans. Even though T.denitrificans had complete denitrification genes, its efficiency was low when used alone. The interaction of T.denitrificans and S.maltophilia reduced nitrite accumulation, leading to complete denitrification. A sufficient quantity of S.maltophilia may trigger the autotrophic denitrification activity of T.denitrificans. When the colony-forming units (CFU) ratio of S.maltophilia to T.denitrificans was reached at 2:1, the highest denitrification performance was achieved at 2.56 and 12.59 times higher than applied alone. This research provides a good understanding of the optimal microbial matching for the future application of bio-S.


Denitrification , Electrons , Sulfur , Autotrophic Processes , Sulfides , Bioreactors , Nitrogen
16.
Nanoscale Adv ; 5(10): 2804-2812, 2023 May 16.
Article En | MEDLINE | ID: mdl-37205282

The key to the application of direct methanol fuel cells is to improve the activity and durability of Pt-based catalysts. Based on the upshift of the d-band centre and exposure to more Pt active sites, Pt3PdTe0.2 catalysts with significantly enhanced electrocatalytic performance for the methanol oxidation reaction (MOR) were designed in this study. A series of different Pt3PdTex (x = 0.2, 0.35, and 0.4) alloy nanocages with hollow and hierarchical structures were synthesized using cubic Pd nanoparticles as sacrificial templates and PtCl62- and TeO32- metal precursors as oxidative etching agents. The Pd nanocubes were oxidized into an ionic complex, which was further co-reduced with Pt and Te precursors by reducing agents to form the hollow Pt3PdTex alloy nanocages with a face-centred cubic lattice. The sizes of the nanocages were around 30-40 nm, which were larger than the Pd templates (18 nm) and the thicknesses of the walls were 7-9 nm. The Pt3PdTe0.2 alloy nanocages exhibited the highest catalytic activities and stabilities toward the MOR after electrochemical activation in sulfuric acid solution. CO-stripping tests suggested the enhanced CO-tolerant ability due to the doping of Te. The specific activity of Pt3PdTe0.2 for the MOR reached 2.71 mA cm-2 in acidic conditions, which was higher than those of Pd@Pt core-shell and PtPd1.5 alloy nanoparticles and commercial Pt/C. A DMFC with Pt3PdTe0.2 as the anodic catalyst output a higher power density by 2.6 times than that of commercial Pt/C, demonstrating its practicable application in clean energy conversions. Density functional theory (DFT) confirmed that the alloyed Te atoms altered the electron distributions of Pt3PdTe0.2, which could lower the Gibbs free energy of the rate-determining methanol dehydrogenation step and greatly improve the MOR catalytic activity and durability.

17.
Environ Sci Technol ; 57(19): 7490-7502, 2023 05 16.
Article En | MEDLINE | ID: mdl-37053517

Sustainable nitrogen cycle is an essential biogeochemical process that ensures ecosystem safety and byproduct greenhouse gas nitrous oxide reduction. Antimicrobials are always co-occurring with anthropogenic reactive nitrogen sources. However, their impacts on the ecological safety of microbial nitrogen cycle remain poorly understood. Here, a denitrifying bacterial strain Paracoccus denitrificans PD1222 was exposed to a widespread broad-spectrum antimicrobial triclocarban (TCC) at environmental concentrations. The denitrification was hindered by TCC at 25 µg L-1 and was completely inhibited once the TCC concentration exceeded 50 µg L-1. Importantly, the accumulation of N2O at 25 µg L-1 of TCC was 813 times as much as the control group without TCC, which attributed to the significantly downregulated expression of nitrous oxide reductase and the genes related to electron transfer, iron, and sulfur metabolism under TCC stress. Interestingly, combining TCC-degrading denitrifying Ochrobactrum sp. TCC-2 with strain PD1222 promoted the denitrification process and mitigated N2O emission by 2 orders of magnitude. We further consolidated the importance of complementary detoxification by introducing a TCC-hydrolyzing amidase gene tccA from strain TCC-2 into strain PD1222, which successfully protected strain PD1222 against the TCC stress. This study highlights an important link between TCC detoxification and sustainable denitrification and suggests a necessity to assess the ecological risks of antimicrobials in the context of climate change and ecosystem safety.


Anti-Infective Agents , Nitrous Oxide , Denitrification , Ecosystem , Biotransformation , Nitrogen
18.
Sci Total Environ ; 882: 163174, 2023 Jul 15.
Article En | MEDLINE | ID: mdl-37028676

Leather wastewater (LW) effluent is characterized by complex organic matter, high salinity, and poor biodegradability. To meet the discharge standards, LW effluent is often mixed with municipal wastewater (MW) before being treated at a leather industrial park wastewater treatment plant (LIPWWTP). However, whether this method efficiently removes the dissolved organic matter (DOM) from LW effluent (LWDOM) remains debatable. In this study, the transformation of DOM during full-scale treatment was revealed using spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry. LWDOM exhibited higher aromaticity and lower molecular weight than DOM in MW (MWDOM). The DOM properties in mixed wastewater (MixW) were similar to those in LWDOM and MWDOM. The MixW was treated using a flocculation/primary sedimentation tank (FL1/PST), anoxic/oxic (A/O) process, secondary sedimentation tank (SST), flocculation/sedimentation tank, denitrification filter (FL2/ST-DNF), and an ozonation contact reactor (O3). The FL1/PST unit preferentially removed the peptide-like compounds. The A/O-SST units had the highest removal efficiencies for dissolved organic carbon (DOC) (61.34 %) and soluble chemical oxygen demand (SCOD) (52.2 %). The FL2/ST-DNF treatment removed the lignin-like compounds. The final treatment showed poor DOM mineralization efficiency. The correlation between water quality indices, spectral indices, and molecular-level parameters indicated that lignin-like compounds were strongly correlated with spectral indices and CHOS compounds considerably contributed to the SCOD and DOC. Although the effluent SCOD met the discharge standard, some refractory DOM from LW remained in the effluent. This study illustrates the composition and transformation of DOM and provides theoretical guidance for improving the current treatment processes.

19.
Environ Sci Technol ; 57(47): 18668-18679, 2023 Nov 28.
Article En | MEDLINE | ID: mdl-36730709

Hydroxyl radical production via catalytic activation of HOCl is a new type of Fenton-like process. However, metal-chlorocomplex formation under high chloride conditions could deactivate the catalyst and reduce the process efficiency. Herein, in situ electrogenerated HOCl was activated to •OH via a metal-free, B/N-codoped carbon nanofiber cathode for the first time to degrade contaminant under high chloride condition. The results show 98% degradation of rhodamine B (RhB) within 120 min (k = 0.036 min-1) under sulfate conditions, while complete degradation (k = 0.188 min-1) was obtained in only 30 min under chloride conditions. An enhanced degradation mechanism consists of an Adsorb & Shuttle process, wherein adsorption concentrates the pollutants at the cathode surface and they are subsequently oxidized by the large amount of •OH produced via activation of HOCl and H2O2 at the cathode. Density functional theory calculations verify the pyridinic N as the active site for the activation of HOCl and H2O2. The process efficiency was also evaluated by treating tetracycline and bisphenol A as well as high chloride-containing real secondary effluents from a pesticide manufacturing plant. High yields of •OH and HOCl allow continuous regeneration of the cathode for several cycles, limiting its fast deactivation, which is promising for real application.


Hydroxyl Radical , Water Pollutants, Chemical , Hydroxyl Radical/chemistry , Chlorides , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Anti-Bacterial Agents , Water Pollutants, Chemical/analysis , Electrodes
20.
Environ Res ; 223: 115409, 2023 04 15.
Article En | MEDLINE | ID: mdl-36746203

An important way to promote the environmental industry's goal of carbon reduction is to promote the recycling of resources. Membrane separation technology has unique advantages in resource recovery and advanced treatment of industrial wastewater. However, the great promise of traditional organic membrane is hampered by challenges associated with organic solvent tolerance, lack of oxidation resistance, and serious membrane fouling control. Moreover, the high concentrations of organic matter and inorganic salts in the membrane filtration concentrate also hinder the wider application of the membrane separation technology. The emerging cost-effective graphene oxide (GO)-based membrane with excellent resistance to organic solvents and oxidants, more hydrophilicity, lower membrane fouling, better separation performance has been expected to contribute more in industrial wastewater treatment. Herein, we provide comprehensive insights into the preparation and characteristic of GO membranes, as well as current research status and problems related to its future application in industrial wastewater treatment. Finally, concluding remarks and future perspectives have been deduced and recommended for the GO membrane separation technology application for industrial wastewater treatment, which leads to realizing sustainable wastewater recycling and a nearly "zero discharge" water treatment process.


Graphite , Water Purification , Wastewater , Membranes, Artificial
...